(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(X) → cons(mark(X), f(g(X)))
a__g(0) → s(0)
a__g(s(X)) → s(s(a__g(mark(X))))
a__sel(0, cons(X, Y)) → mark(X)
a__sel(s(X), cons(Y, Z)) → a__sel(mark(X), mark(Z))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → a__g(mark(X))
mark(sel(X1, X2)) → a__sel(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__g(X) → g(X)
a__sel(X1, X2) → sel(X1, X2)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
mark(f(X)) →+ cons(mark(mark(X)), f(g(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X / f(X)].
The result substitution is [ ].
The rewrite sequence
mark(f(X)) →+ cons(mark(mark(X)), f(g(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / f(X)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(X) → cons(mark(X), f(g(X)))
a__g(0') → s(0')
a__g(s(X)) → s(s(a__g(mark(X))))
a__sel(0', cons(X, Y)) → mark(X)
a__sel(s(X), cons(Y, Z)) → a__sel(mark(X), mark(Z))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → a__g(mark(X))
mark(sel(X1, X2)) → a__sel(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0') → 0'
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__g(X) → g(X)
a__sel(X1, X2) → sel(X1, X2)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
a__f(X) → cons(mark(X), f(g(X)))
a__g(0') → s(0')
a__g(s(X)) → s(s(a__g(mark(X))))
a__sel(0', cons(X, Y)) → mark(X)
a__sel(s(X), cons(Y, Z)) → a__sel(mark(X), mark(Z))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → a__g(mark(X))
mark(sel(X1, X2)) → a__sel(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0') → 0'
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__g(X) → g(X)
a__sel(X1, X2) → sel(X1, X2)
Types:
a__f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
cons :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
mark :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
0' :: g:f:cons:0':s:sel
s :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
hole_g:f:cons:0':s:sel1_0 :: g:f:cons:0':s:sel
gen_g:f:cons:0':s:sel2_0 :: Nat → g:f:cons:0':s:sel
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__f,
mark,
a__g,
a__selThey will be analysed ascendingly in the following order:
a__f = mark
a__f = a__g
a__f = a__sel
mark = a__g
mark = a__sel
a__g = a__sel
(8) Obligation:
TRS:
Rules:
a__f(
X) →
cons(
mark(
X),
f(
g(
X)))
a__g(
0') →
s(
0')
a__g(
s(
X)) →
s(
s(
a__g(
mark(
X))))
a__sel(
0',
cons(
X,
Y)) →
mark(
X)
a__sel(
s(
X),
cons(
Y,
Z)) →
a__sel(
mark(
X),
mark(
Z))
mark(
f(
X)) →
a__f(
mark(
X))
mark(
g(
X)) →
a__g(
mark(
X))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__f(
X) →
f(
X)
a__g(
X) →
g(
X)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
cons :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
mark :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
0' :: g:f:cons:0':s:sel
s :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
hole_g:f:cons:0':s:sel1_0 :: g:f:cons:0':s:sel
gen_g:f:cons:0':s:sel2_0 :: Nat → g:f:cons:0':s:sel
Generator Equations:
gen_g:f:cons:0':s:sel2_0(0) ⇔ 0'
gen_g:f:cons:0':s:sel2_0(+(x, 1)) ⇔ cons(0', gen_g:f:cons:0':s:sel2_0(x))
The following defined symbols remain to be analysed:
mark, a__f, a__g, a__sel
They will be analysed ascendingly in the following order:
a__f = mark
a__f = a__g
a__f = a__sel
mark = a__g
mark = a__sel
a__g = a__sel
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mark.
(10) Obligation:
TRS:
Rules:
a__f(
X) →
cons(
mark(
X),
f(
g(
X)))
a__g(
0') →
s(
0')
a__g(
s(
X)) →
s(
s(
a__g(
mark(
X))))
a__sel(
0',
cons(
X,
Y)) →
mark(
X)
a__sel(
s(
X),
cons(
Y,
Z)) →
a__sel(
mark(
X),
mark(
Z))
mark(
f(
X)) →
a__f(
mark(
X))
mark(
g(
X)) →
a__g(
mark(
X))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__f(
X) →
f(
X)
a__g(
X) →
g(
X)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
cons :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
mark :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
0' :: g:f:cons:0':s:sel
s :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
hole_g:f:cons:0':s:sel1_0 :: g:f:cons:0':s:sel
gen_g:f:cons:0':s:sel2_0 :: Nat → g:f:cons:0':s:sel
Generator Equations:
gen_g:f:cons:0':s:sel2_0(0) ⇔ 0'
gen_g:f:cons:0':s:sel2_0(+(x, 1)) ⇔ cons(0', gen_g:f:cons:0':s:sel2_0(x))
The following defined symbols remain to be analysed:
a__f, a__g, a__sel
They will be analysed ascendingly in the following order:
a__f = mark
a__f = a__g
a__f = a__sel
mark = a__g
mark = a__sel
a__g = a__sel
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__f.
(12) Obligation:
TRS:
Rules:
a__f(
X) →
cons(
mark(
X),
f(
g(
X)))
a__g(
0') →
s(
0')
a__g(
s(
X)) →
s(
s(
a__g(
mark(
X))))
a__sel(
0',
cons(
X,
Y)) →
mark(
X)
a__sel(
s(
X),
cons(
Y,
Z)) →
a__sel(
mark(
X),
mark(
Z))
mark(
f(
X)) →
a__f(
mark(
X))
mark(
g(
X)) →
a__g(
mark(
X))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__f(
X) →
f(
X)
a__g(
X) →
g(
X)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
cons :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
mark :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
0' :: g:f:cons:0':s:sel
s :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
hole_g:f:cons:0':s:sel1_0 :: g:f:cons:0':s:sel
gen_g:f:cons:0':s:sel2_0 :: Nat → g:f:cons:0':s:sel
Generator Equations:
gen_g:f:cons:0':s:sel2_0(0) ⇔ 0'
gen_g:f:cons:0':s:sel2_0(+(x, 1)) ⇔ cons(0', gen_g:f:cons:0':s:sel2_0(x))
The following defined symbols remain to be analysed:
a__g, a__sel
They will be analysed ascendingly in the following order:
a__f = mark
a__f = a__g
a__f = a__sel
mark = a__g
mark = a__sel
a__g = a__sel
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__g.
(14) Obligation:
TRS:
Rules:
a__f(
X) →
cons(
mark(
X),
f(
g(
X)))
a__g(
0') →
s(
0')
a__g(
s(
X)) →
s(
s(
a__g(
mark(
X))))
a__sel(
0',
cons(
X,
Y)) →
mark(
X)
a__sel(
s(
X),
cons(
Y,
Z)) →
a__sel(
mark(
X),
mark(
Z))
mark(
f(
X)) →
a__f(
mark(
X))
mark(
g(
X)) →
a__g(
mark(
X))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__f(
X) →
f(
X)
a__g(
X) →
g(
X)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
cons :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
mark :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
0' :: g:f:cons:0':s:sel
s :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
hole_g:f:cons:0':s:sel1_0 :: g:f:cons:0':s:sel
gen_g:f:cons:0':s:sel2_0 :: Nat → g:f:cons:0':s:sel
Generator Equations:
gen_g:f:cons:0':s:sel2_0(0) ⇔ 0'
gen_g:f:cons:0':s:sel2_0(+(x, 1)) ⇔ cons(0', gen_g:f:cons:0':s:sel2_0(x))
The following defined symbols remain to be analysed:
a__sel
They will be analysed ascendingly in the following order:
a__f = mark
a__f = a__g
a__f = a__sel
mark = a__g
mark = a__sel
a__g = a__sel
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__sel.
(16) Obligation:
TRS:
Rules:
a__f(
X) →
cons(
mark(
X),
f(
g(
X)))
a__g(
0') →
s(
0')
a__g(
s(
X)) →
s(
s(
a__g(
mark(
X))))
a__sel(
0',
cons(
X,
Y)) →
mark(
X)
a__sel(
s(
X),
cons(
Y,
Z)) →
a__sel(
mark(
X),
mark(
Z))
mark(
f(
X)) →
a__f(
mark(
X))
mark(
g(
X)) →
a__g(
mark(
X))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__f(
X) →
f(
X)
a__g(
X) →
g(
X)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
cons :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
mark :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
f :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__g :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
0' :: g:f:cons:0':s:sel
s :: g:f:cons:0':s:sel → g:f:cons:0':s:sel
a__sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
sel :: g:f:cons:0':s:sel → g:f:cons:0':s:sel → g:f:cons:0':s:sel
hole_g:f:cons:0':s:sel1_0 :: g:f:cons:0':s:sel
gen_g:f:cons:0':s:sel2_0 :: Nat → g:f:cons:0':s:sel
Generator Equations:
gen_g:f:cons:0':s:sel2_0(0) ⇔ 0'
gen_g:f:cons:0':s:sel2_0(+(x, 1)) ⇔ cons(0', gen_g:f:cons:0':s:sel2_0(x))
No more defined symbols left to analyse.